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SUMMARY 
A finite element method has been applied to predict the overall features of the fully developed turbulent flow in 
the non-circular channels of a rod bundle. The finite element discretization is based on the conventional 
Galerkin method using an isoparametric quadrilateral element with mixed interpolation. 

The primary axial flow and turbulent kinetic energy distributions have been predicted for fully developed 
turbulent flow conditions right up to the wall. The secondary velocity is represented by the stream 
function-vorticity formulation and the no-slip boundary conditions are explicitly introduced in the non- 
linear equations by a boundary vorticity formula. The Newton-Raphson method is applied to the stream 
function-vorticity equations and solved simultaneously by the frontal solution technique. 

A one-equation eddy viscosity model of turbulence and an algebraic stress transport model have been used 
to predict primary axial velocity, secondary velocities and turbulent kinetic energy. The predictions obtained 
for a central subchannel of an equilateral-triangular rod array with p / d  = 1.3 are in reasonable agreement with 
experimental data. 

1. INTRODUCTION 

Over the past decade a number of numerical studies have been performed to predict the turbulent 
flow in ducts and passages of non-circular cross-section. Much of this work has been done to 
permit the prediction of turbulent flow and heat transfer quantities in compact passages of heat 
exchangers and fuel rod bundles in nuclear reactor cores. These quantities are considerably 
influenced by the turbulence-driven secondary flows that occur in the cross-plane of all non- 
circular passages. These flows cause the main flow to spiral through the passage and, although they 
are relatively weak compared with the main flow, they have a significant influence on the local 
mean flow distributions, particularly the wall shear stress and axial velocity. 

Many efforts have been made to develop calculational procedures for turbulent flow in non- 
circular passages that include the turbulence-driven secondary flows. The relevant literature has 
been reviewed by Gosman and Rapleyl and more recently by Seale.' The most widely used method 
to simulate the secondary flow has been based on simplified algebraic forms of the Reynolds stress 
transport equations. This algebraic stress transport model (AST model) was introduced by 
Launder and Ying3 for square-duct calculations. 

The primary axial flow calculations are based on a turbulence model using the eddy viscosity 
concept. Calculational procedures using the concept of eddy viscosity for the primary axial flow 
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together with the AST model that allows the secondary flow to be generated have been successfully 
applied to fully developed flow in square3 and equilateral-triangular d u ~ t s . ~  

These procedures have also been applied to predict distributions of axial velocity, turbulent 
kinetic energy and secondary velocities in rod bundle geometries by a number of 
investigators.'.*."-' In previous work ' ' . 'I  on rod bundle calculations, secondary flow was 
neglected and anisotropic eddy viscosities introduced to improve circumferential momentum 
transport. 

In the present work attempts were made to predict primary axial velocity and turbulent kinetic 
energy as well as secondary velocities of the flow. The secondary flow is studied using the stream 
function -vorticity formulation. This formulation has the advantage that the pressure can be 
eliminated and the continuity equation is satisfied exactly. Both the axial velocity and energy of 
turbulence are computed directly using an one-equation eddy viscosity model of turbulence. The 
predictions arc based on isotropic eddy viscosities and applied through the boundary layer right up 
to solid walls. 

The inclusion of the flow region in the vicinity of walls means that solid boundary conditions can 
be applied exactly. I t  is the author's opinion that the exact application ofsolid boundary conditions 
in the computations is of prime importance to achieve convergence and correct solutions. 
Consequently the need for mesh refinement in the wall region for steeply varying velocity and 
turbulence fields has to be accepted. However, in the case of the central subchannel under 
consideration the wall region is relatively small in comparison with the whole area. 

Another significant difference of the present work compared with that of the aforementioned 
investigators' - 9  is the numerical technique applied to solve the governing equations. All these 
researchers have used the finite difference technique in relationship with the empirical wall function 
formulae for specifying boundary conditions. In the present work the finite element method is 
applied to compute the turbulent flow quantities including the boundary layer. This numerical 
technique has the advantage of providing an accurate description of the complex bundle geometry, 
whereas regions with steep gradients can be easily refined and boundary conditions expressed in an 
appropriate way. 

Recently, Vonka eI d.I2 investigated secondary flow in a duct simulating an interior subchannel 
of a triangular array ( p j d =  1.3) using a laser Doppler anemometer. The results of these 
measurements have been compared qualitatively with the present predictions. These measure- 
ments also included other turbulent flow quantities such as primary axial velocity, turbulent 
kinetic energy and Reynolds stresses. However, evaluation of these measured data is still in 
progress. 

2. MATHEMATICAL FORMULATION 

2.1. Goreriiitig equations 

The continuity equation and the fluid momentum or Navier- Stokes equations for fully 
developed, axial turbulent flow of a constant properties fluid in cylindrical-polar co-ordinates 
(r ,  4, z )  are 

d s v* ---(rV,)+-----  =o, 
r?r r&#t 

radial r-motnentum 
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peripheral &momentum 

axial z-momentum 

where V,, V, and W are the time-averaged velocity components in the directions of the three 
cylindrical co-ordinates r, 4 and z. The corresponding fluctuating components of the velocities are 
u,, u, and w. 

Introducing the stream function I,$ and axial vorticity w as 

P v, = awra4 ,  p v, = - a$ jar (5 )  

and 

the governing equations (1H3) yield respectively the stream function and the axial vorticity 
equation, i.e. 

1 

P 
-v2+ + 0 = 0, (7) 

where the vorticity production term S, is given by 

This source term is written in an alternative way, i.e. 

where 6, and 6, are components of the source vector 6, defined by 
~ ~ - - - _  __ 

(1 1) 

In Section 3 it will be outlined that the modified expression for S ,  given by equations (10) and (1 1) is 
essential in the application of the finite element method. 

For the axial velocity prediction the turbulence shear stresses WV, and KG, in equation (4) are 
defined by 

aurUs u,u, aU; au: t i - u ;  avrU, d,=-+--- 6, = ___ + 2- - -, 
ar r ra4 ar r ra4 ' 

- ~ 

W U ,  = - v,(a w/ar), wu, = - v,(a w/ra4) ,  (12) 

where V, is the kinematic eddy viscosity of the fluid. 
Substituting the eddy viscosity equation (12) into equation (4) for the axial velocity and 
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introducing the stream function equation ( 5 )  yields the following axial momentum equation: 

W- -~ W- -- rp (v+v , ) -  -__ p(v+v , ) -  + - = O .  ( 1 3 )  ”( rar i:) r;$( ::) r i r (  t:) r i @ (  ::) E 
Solutions of equations (7), (8) and (13) may now be obtained for the stream function, the vorticity 

and the axial velocity component, providing the distribution of the eddy viscosity v ,  and the source 
term S ,  can be described. The turbulence quantities v,  and S ,  will be discussed in the next 
subsection. 

2.2. Turbulence models 

In this paper a low-Reynolds-number form of the turbulence energy model proposed by Hassid 
and Poreh’ is adopted to evaluate the eddy viscosity. In this model the eddy viscosity in equation 
(12 )  is related to the local values of the turbulence length scale 1 and the turbulent kinematic energy 
k by the Kolmogorov-Prandtl formula14* 

v ,  = C, k1I2 I ,  (14) 
where C ,  is constant. 

Since the model is applied to boundary layer flows right up to the wall, the eddy viscosity is 
corrected for the presence of walls by introducing a damping function dependent on the turbulence 
Reynolds number Rt, i.e. 

vl = C, k’I21 [ 1 - exp(A,Rt)], (15) 

Rt = k’”1Jv. (16) 

(17) 

where A ,  is a constant and Rt is defined by 

The turbulence length scale is calculated from the geometric formula suggested by Nikuradse,16 i.e. 

I =  YC1 - 1.UY/YO) + o.6(Y/Yo)2 - 0.1 5(Y/Yo)31> 

where yo is the distance from the wall to the maximum velocity line along a radial line as indicated 
in Figure 3. 

The transport equation for the turbulent kinetic energy has been derived by several authors and 
in the present case of fully developed axial flow the equation becomes 

where E is the dissipation rate of turbulence energy and s k  is the energy production term given by 

s, = - agy + (>2]. 
(19) 

The turbulence model proposed by Hassid and Poreh’ is based on the turbulence energy model 
introduced by Wolfshtein,” which has been slightly modified to give a better description of the 
flow features in the wall region. This modification has resulted in a simpler and physically clearer 
form of the dissipation term E,  i.e. 

~ = 2 p ( ~ + v ~ ) k / l ~ .  (20 )  
This form satisfies the requirements that both the dissipation near the wall is balanced by the 
viscous diffusion and the turbulent kinetic energy at the wall is quadratic in the wall distance. 
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The turbulence energy model is tested by the author for fully developed turbulent pipe flow and 
the predictions obtained are in good agreement with experimental data for pipe flow. In this study 
the energy model is applied to evaluate the eddy viscosities for turbulent flow predictions in a 
central subchannel of a rod bundle. 

It is anticipated that secondary flow plays a more dominant role in momentum transport than 
anisotropy and hence isotropic eddy viscosities have been assumed throughout this study. For the 
empirical constants the values C ,  =0.22, ak= 1 and A ,  =0*012 given by Hassid and Poreh13 have 
been adopted. 

The turbulence stresses in the vorticity production term S ,  are calculated from the AST model 
proposed by Launder and Ying:3 

and 

where C is a coefficient. The value of this coefficient has been varied in the computational 
procedure. 

The term v,/(v + v,) in equations (21) and (22) is additional in comparison with the original 
expressions introduced by Launder and Ying3 and accounts for the near-wall turbulence being 
considered in the present analysis. 

2.3. Boundary conditions 

The final computation scheme requires solutions of the differential equations (7), (8), (13) and (18) 
with the auxiliary equations (15), (17), (21) and (22). Since these differential equations are all 
examples of quasi-linear elliptic partial differential equations, Dirichlet and Neumann boundary 
conditions have to be given on the whole boundary of the domain under consideration. 

However, in the stream function-vorticity formulation difficulties arise with the boundary 
conditions for vorticity. At  solid boundaries two boundary conditions are given for the stream 
function, called no-slip conditions, whereas no solid boundary condition exist for the vorticity. The 
no-slip conditions are given in the form 

*=$0 and a*/an = 0, (23) 
where n is the outward normal. 

The last condition of equation (23) will be used to obtain vorticity values on the solid boundaries. 
Expanding the stream function in a Taylor series around the point J/o  along the normal direction 
from a wall, the following relationship can be obtained: 

where h is the distance between the point on the wall and an interior point indicated by the 
subscripts 0 and 1 respectively. With specification of the boundary conditions, the statement of the 
stream function-vorticity problem is completed. 

Furthermore, integration of the stream function equation (7) along the outward normal of a wall 
using the no-slip conditions of equation (23) shows that a linear variation of the vorticity at the wall 
results in a quadratic distribution of the stream function. This result indicates that in terms of the 
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finite element method the interpolation function for vorticity in the direction normal to a wall 
should be one degree lower than those for the stream function to satisfy the no-slip boundary 
conditions. 

3. FINITE ELEMENT METHOD 

3.1. Method of weighted residuals 

The method of weighted residuals is employed to replace the differential equations by integral 
formulations. Applying the weighted residual method to obtain integral forms corresponding to 
equations (7) and (8), one obtains 

la Ql(V2$ +po)dR=O, (25) 

@ 2  [ g( 0145) --&(a:) - pvVZw + S ,  dR = 0, 1 
where Q1 and Q2 are weighting functions. 

The value of these weighting functions is arbitrary except that they should be smooth and vanish 
on the part of the boundary where Dirichlet boundary conditions are specified. Since the vorticity 
source term S, is written in an alternative way by equation (10) instead of equation (9), the Gauss 
theorem is applicable to this term as well as to the terms V2$ and V2w in equations (25) and (26) and 
gives 

where I' is the part of the boundary where a+/&, b / a n  and 6, are given. The result is that all 
integrands of the integrals in equations (27) and (28) contain only first-order derivatives, which is of 
prime importance for the finite element method. In the case of the isoparametric finite element 
description, however, one is forced to reduce all higher derivatives to first-order ones. 

Using the Galerkin criteria to select weighting functions for the finite element formulation, the 
weighting function Q1 and O2 are identical to the interpolation or shape functions for stream 
function and vorticity respectively. 

3.2. Finite element formulation 

In this analysis the isoparametric quadrilateral element shown in Figure 1 is employed to 
describe the complex rod bundle geometry. 

The approximation of the axial velocity, kinetic energy and stream function over each 
quadrilateral element is achieved by a biquadratic interpolation function. As already stated, the 
interpolation function for vorticity in the direction normal to the walls has to be one degree lower 
than those for the stream function approximations to satisfy solid boundary requirements. This 
does not apply to the interpolation function in the direction parallel to the walls. 

The vorticity approximation over each quadrilateral element in the co-ordinate direction 
parallel to the walls is treated in different ways by altering the interpolation function from 
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a. NON- DIMENSIONAL COORDINATES b. PHYSICAL COORDINATES 

BIQUADRATIC INTERPOLATION FUNCTION FOR STREAM FUNCTION 

Figure 1. Nine-noded isoparametric quadrilateral element 

quadratic to linear. A linear approximation suitable for the no-slip boundary conditions is always 
used in the co-ordinate direction perpendicular to the walls. The mixed interpolation formulation 
for the stream function-vorticity variables has already been employed by Dhatt et a1." 

The resulting set of simultaneous, finite element equations in matrix form is as follows: 

["'I"] L o + V 2  {?} 0 = {El, 
where 

In equation (29) the row vectors N and M denote the interpolation functions for $ and o, while $ 
and o are column vectors with the components $ and w as nodal values respectively. 

Equation (29) is linearized by application of the Newton-Raphson method and the resulting 
tangent matrix I at element level is 

(30) 

where the submatrices V1, V2 and K are constant and are identical to those in equation (29). The 
submatrix L$ is defined as 

I =  ____ [::lvZ*]' 

The terms of the non-linear submatrices Lo and L$ are functions of o and t,b respectively. 
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Assembly of the elemental equation (30) into the required global form yields equations for the 
whole domain under consideration. The global equations are solved within each iteration step by 
the frontal solution t echn iq~e ’~  after introducing the boundary conditions. The ordinary 
boundary conditions are handled in a routine manner in the finite element equations, but the 
stream function gradient or no-slip boundary condition at solid walls is treated by the boundary 
vorticity formula equation (24). This equation, which defines the nodal values of w on the wall in 
terms of nodal values of $ on the wall and close to the wall, is employed to modify the assembled 
tangent matrix. The implementation of this equation is effected by suitable matrix manipulations. 

The simultaneous solution of stream function and vorticity, together with the application of the 
boundary vorticity formula, results in a direct method of introducing no-slip conditions. This 
direct method gives fast convergent solutions for the secondary-flow problem. 

The foregoing procedure, although applied to the variables of stream function and vorticity, is 
completely general and can also be applied to construct element matrices and vectors for axial 
velocity and turbulent kinetic energy. The computer program VITESSE has been developed at the 
author’s laboratory on the above outlined principles and further details can be found in 
Reference 20. 

4. NUMERICAL RESULTS AND DISCUSSION 

4.1. Rod bundle geometry 

triangular rod array with a rod pitch/diameter ( p / d )  ratio of 1.3, as shown in Figure 2. 

together with the cylindrical-polar co-ordinate system ( r , 4 ,  z) used in the investigation. 

consists of 11 x 20 elements with 23 x 41 nodes, as shown in Figure 4. 

The computational method is applied to analyse turbulent flow in passages of an equilateral- 

To study the fully developed primary flow the flow region of interest is shown in Figure 3 

The mesh is generated automatically by means of the PDA/PATRAN-G program” and 

\ SUBCHANh 

Figure 2. Cross-section of equiiateral triangular rod array; the cross-hatched area represents the flow area considered 
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= 0 deg. 

Figure 3. Cylindrical-polar co-ordinate system 

Figure 4. Finite element mesh 

The isoparametric finite element representation shows that the irregular geometry of this 
subchannel and the required mesh refinement close to the wall are easily met by the use of this finite 
element formulation. The first mesh line near the wall was located at y +  -2 and roughly seven 
elements were situated within the boundary layer y + d 60. 

At the solid boundary the mean axial velocity and kinetic energy are zero, whereas the normal- 
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to-boundary gradients of the mean axial velocity and turbulent kinetic energy were set to zero 
along the three non-solid boundaries as is demanded by symmetry. 

The stream function is constant along all four boundaries; this constant was conveniently taken 
to be zero. 

The vorticity is zero along the three non-solid boundaries. The unknown solid boundary 
condition of the vorticity is handled in a routine manner in the set of finite element equations by 
employing the boundary vorticity formula. 

The computations were carried out for a Reynolds number Re of 160000 and based on the 
hydraulic diameter d ,  of the subchannel (four times the flow area divided by the wetted perimeter). 

4.2. Numerical aspects 

As described in Section 3.2, two different interpolation functions for the vorticity in the 
circumferential direction of the rod have been applied. The results show that the linear 
interpolation converges much faster than the quadratic approximation. The Euclidean norm of 
both the stream function and the vorticity solution vectors differ by roughly one order of 
magnitude after ten Newton iterations. For this reason, in the remainder of this investigation the 
vorticity is interpolated by a linear function in both co-ordinate directions, i.e. bilinear. 

Further, the numerical stability of the stream functions and the vorticity calculations was found 
to be quite sensitive to the coefficient C in the expressions of equations (21) and (22) for the vorticity 
source term. The calculations were initiated with a relatively small value of C,  say 0.0005, to ensure 
converged solutions. 

4.3. Secondary Jlows 

The contour plots of the vorticity in Figure 5 show a positive area adjacent to the rod separated 
by a zero contour from the negative-vorticity region in the central part of the channel. Positive 
vorticity appears also in the rectangular corner region of the symmetry lines; however, it has rather 
low values. 

It is found that near the wall the vorticity is almost constant in the direction perpendicular to the 
wall. 

The computed streamlines are shown in Figure 6. The location of the maximum stream function 
value indicates the centre of the secondary-flow vortex. The numerical results revealed at the wall a 
quadratic variation of the stream function with the normal wall distance. The maximum stream 
function value of 0.1 1625 was computed at the circumferential position 4 = 17.8". 

Figure 7 shows the secondary-velocity vectors obtained by differentiation of the stream function 
with respect to the independent variables. It can be seen from this velocity vector field that the no- 
slip condition has been satisfied in the computation of the variables stream function and vorticity. 

The maximum secondary velocities occurred near the wall in the circumferential direction and 
were about 0.25% of the axial bulk velocity. 

The coefficient C in the expressions for the components of the source term, equations (21) and 
(22), was set to 0.001 in deriving the computed secondary-flow results. The pattern and magnitude 
of the secondary flow are similar to those measured by Vonka et al." The position of the computed 
secondary-flow vortex coincides roughly with the experimental vortex centre. 

4.4. Turbulent kinetic energy and axial velocity distributions 

A contour plot of the turbulent kinetic energy with and without secondary flow is shown in 
Figure 8. The effect of secondary flow is easily observed in the core of the subchannel towards the 
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Figure 5. Equivorticity lines 

symmetry line 4 =30". The computed distribution of turbulent kinetic energy is normalized with 
the square of the mean shear velocity. 

Axial velocity contours computed with and without secondary flow are shown in Figure 9. The 
results revealed the influence of the secondary flow on the axial velocity distribution. In 
comparison with the contours predicted with secondary flow suppressed, the predicted axial 
velocities are more uniform-a uniformity that extends from the core region of the flow towards 
the rod wall. 

A comparison of the numerical results with the universal velocity profiles is made in Figure 10. 
The predictions normalized by the local friction velocity are independent of the angular position. 
The good fit of the universal velocity profiles is obtained for the values of the model constants 
established by Hassid and Poreh.13 For the fully turbulent part of the boundary layer, where 
y +  30, close agreement is obtained between predictions and the universal law W+ =2.5 In y +  + 5 
up to some maximum value of y + . 

The local wall shear stress is computed as z, = pv(aN/ay)W, where W are the nodal values of 
the velocity at the wall and next to the wall. 

The value of the computed average wall shear stress corresponds to the theoretical value. The 
theoretical average wall shear stress can be obtained by the balance equation for the subchannel 
derived from integration of the momentum equation over the channel cross-section. The wall shear 
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Figure 6. Streamlines 0 

stress distribution computed both with and without secondary flows is shown in Figure 11. 
Suppression of the secondary flows increases the variation of the shear stress along the perimeter of 
the rod. 

Since the pressure drop along the subchannel has to be prescribed in the computations, the 
friction factor was calculated as A =  (dP/dz)(d&p e). For the Reynolds number Re = 160000 used 
in this investigation, the value of the friction factor A was found to be 001761. This value is in close 
agreement with that obtained from the relationship 3, = 0.19 Re-0’206.2 The effect of including 
secondary flows in the friction factor calculations turns out to be negligibly small. 

5. CONCLUSIONS AND REMARKS 

The turbulence energy model for isotropic eddy viscosity introduced by Hassid and Poreh,I3 
together with the algebraic stress transport model (AST model) proposed by Launder and Yir~g ,~  
enabled the prediction of primary axial velocity, turbulence energy and secondary velocities. As 
compared with previous approaches from other  investigator^,^,^ the modified form of the AST 
model adopted in this study can take into account secondary-flow effects up to the solid 
boundaries. For the particular case of fully developed flow in channels of a rod bundle with 
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Figure 7. Secondary-velocity vector field 

p / d =  1.3 and Re= 160000, the value of coefficient C in equations (21) and (22) of the AST model 
turns out to be 0001. 

The predicted pattern and magnitude of the secondary flow is consistent with that measured by 
Vonka et al.I2 The effect of secondary flow is evident on the primary axial flow, turbulence energy 
and wall shear stress distribution. It is of interest to note that the present calculation method, 
employing isotropic eddy viscosities and simulating secondary flow, is capable of achieving 
accurate detail in the prediction of local turbulent flow quantities in complex passages. The present 
work and results from previous work'0911 in which secondary flow was neglected indicate that 
anisotropic eddy viscosities have an effect on local flow distributions similar to that of secondary 
flow. 

The stream function-vorticity formulation for the secondary velocities has been found to work 
well provided that certain conditions are satisfied. First, the no-slip boundary conditions for the 
stream function must be applied directly, through defining vorticity boundary values by an 
approximate formula employed iteratively. Direct application of the boundary conditions can be 
achieved by the finite element discretization. Second, the order of interpolation for the vorticity 
must be one degree lower than those for the stream function to allow both boundary conditions to 
be satisfied. 

The finite element method has been used for the simultaneous solution of both stream function 
and vorticity using Newton-Raphson iterations. It is found that the number of Newton iterations 
is largely influenced by the coefficient C in the equations (21) and (22) of the AST model. The 
treatment of the vorticity source term S ,  is a novel feature in the present finite element approach of 
the secondary-flow analysis. 

Since isoparametric elements are used, the finite element method provides an accurate 
description of complex bundle geometries, whereas regions with steep gradients can be easily 
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Figure 8. Contours of turbulence energy 

refined and boundary conditions expressed in an appropriate way. The numerical integration is 
based on the Gauss-Legendre quadrature. 

For secondary-flow problems the stream function-vorticity formulation has a certain measure 
of economy over the primitive variables approach which has been adopted by most researchers. In 
addition, the stream function-vorticity approach has the advantage of satisfying continuity 
exactly. However, the author has clear indications that increased ease in finite element 
computations can be achieved by treating the governing equations in terms of the primitive 
variables of pressure and velocity using the penalty finite element method. 

The experimental work of Vonka et a l l 2  deals with a bundle geometry of a triangular rod array 
and p / d  = 1.3. Since secondary flow is more pronounced in closely packed bundle geometries,’ 
additional experimental data are necessary for code validation derived from bundle geometries 
with p / d  ratios smaller than 1.3. 

From Reynolds’ analogy between transport of momentum and transport of heat, as outlined by 
Hinze,” it can be deduced, in a tentative way, that, due to secondary flow, the variation in flux of 
heat from the rod decreases and, consequently, results in attenuation of the circumferential rod 
temperature differences. Since the temperature distribution within the rod bundle is of prime 
importance in nuclear reactor design, reliable rod temperature predictions are necessary. In this 
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respect the effect of secondary flow on the transport of heat in the coolant is of particular interest. 
However, the true role and importance of secondary flow on the transport of heat can be examined 
numerically. The present calculation method can provide all necessary hydraulic information to 
perform calculations of temperature fields in rod bundles. 
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NOMENCLATURE 

A ,  empirical constant 
C, C, empirical constants 
d rod diameter 
dh equivalent hydraulic diameter 
I tangent matrix defined by equation (30) 
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turbulent kinetic energy k =$ ( z i 2  + V2 + W2) 
dimensionless kinetic energy k +  = k/  V 2  
elemental matrix of vorticity 
length scale defined by equation (17) 
elemental matrix of convective transport 
shape function for vorticity 
unit outward normal vector 
shape function for axial velocity, kinetic energy and stream function 
pitch of rods 
mean static pressure 
radial co-ordinate 
elemental vector 
Reynolds number Re= W,,d,/v 
turbulence Reynolds number Rt = lk''2/v 
source term of kinetic energy defined by equation (19) 
source term of vorticity defined by equation (9) 
fluctuating components of the velocities in lateral and axial directions 
time-averaged secondary velocity components 
elemental matrix of diffusion 
time-averaged axial velocity component 
bulk axial velocity 
friction velocity w* = ( ~ , / p ) ' / ~  
dimensionless mean axial velocity W+ = W / W  
axial co-ordinate 
radial distance from rod surface (Figure 3) 
dimensionless radial distance y +  = y W/v 
radial distance from wall to MVL (maximum velocity line) (Figure 3) 

Greek symbols 

r boundary of 0 
re element boundary 
6 
E 

r non-dimensional natural co-ordinate 
I I  friction factor = (8P/az) (d , /+p W t )  
V laminar kinematic viscosity 
V t  turbulent kinematic viscosity 
5 non-dimensional natural co-ordinate 
P density 
Ok 

z, 
# angular co-ordinate 
0 weighting function 

source vector defined by equation (1 1) 
dissipation rate of turbulent kinetic energy 

Prandtl number for turbulence energy 
wall shear stress z, = pv(8 W / ~ Y ) ~  = 

stream function defined by equation ( 5 )  
axial vorticity defined by equation (6) 

JI 
w 
n problem domain 
Q, area of an element 
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